MBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching

نویسندگان

  • Mingzhe Su
  • Yan Ma
  • Xiangfen Zhang
  • Yan Wang
  • Yuping Zhang
چکیده

The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

An improvement to the SIFT descriptor for image representation and matching

0167-8655/$ see front matter 2013 Elsevier B.V. A http://dx.doi.org/10.1016/j.patrec.2013.03.021 ⇑ Corresponding author. Tel./fax: +86 29 82667836 E-mail addresses: [email protected], liugz@xjtu Constructing proper descriptors for interest points in images is a critical aspect for local features related tasks in computer vision and pattern recognition. Although the SIFT descriptor has been p...

متن کامل

SIFT Descriptor for Binary Shape Discrimination, Classification and Matching

In this work, we study efficiency of SIFT descriptor in discrimination of binary shapes. We also analyze how the use of 2 − tuples of SIFT keypoints can affect discrimination of shapes. The study is divided into two parts, the first part serves as a primary analysis where we propose to compute overlap of classes using SIFT and a majority vote of keypoints. In the second part, we analyze both cl...

متن کامل

Combined Descriptors in Spatial Pyramid Domain for Image Classification

Recently spatial pyramid matching (SPM) with scale invariant feature transform (SIFT) descriptor has been successfully used in image classification. Unfortunately, the codebook generation and feature quantization procedures using SIFT feature have the high complexity both in time and space. To address this problem, in this paper, we propose an approach which combines local binary patterns (LBP)...

متن کامل

New Robust Descriptor for Image Matching

Nowadays, object recognition based on feature extraction is widely used in image matching due to its robustness to different types of image transformations. This paper introduces a new approach for extracting invariant features from interest regions. This approach is inspired from the well known Scale Invariant Feature Transform (SIFT) interest points detector and aims to improve the computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017